Structure of 5-Hydroxy-8,9-dimethoxy-2,2-dimethyl-7-(3-methyl-2-butenyl)-2H,6H-pyrano[3,2-b]xanthen-6-one*

By K. Ravikumar and S. S. Rajan \dagger
Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India

and V. M. Padmanabhan
Neutron Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

(Received 13 July 1986; accepted 6 October 1986)

Abstract

C}_{25} \mathrm{H}_{26} \mathrm{O}_{6}, M_{r}=422 \cdot 5\), monoclinic, $P 2_{1} / c$, $a=19.228$ (3), $b=6.216$ (1), $c=20.016$ (3) $\AA, \beta=$ $121.05(2)^{\circ}, \quad V=2049.6(7) \AA^{3}, \quad Z=4, \quad D_{m}=$ 1.349 (2) (flotation), $D_{x}=1.369 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo Ka radiation, $\lambda=0.7107 \AA, \mu=0.0909 \mathrm{~mm}^{-1}, F(000)=$ $896, T=294 \mathrm{~K}$, final $R=0.065$ for 1239 reflections [$I>1 \sigma(I)$]. The xanthone ring system is nearly planar. The dihedral angle between the xanthone ring plane and the plane of the 3 -methyl-2-butenyl side chain is $66 \cdot 8(3)^{\circ}$.

Introduction. The fruit hulls and the bark of the East Indian mangosteen tree (Garcinia mangostana, Guttiferae) have been of use in the treatment of dysentery (Yates \& Stout, 1958). The xanthone mangostin (a major component - about 50% - in the mangosteen fruit hulls) and its derivatives were reported to inhibit prostaglandin synthetase, similar to non-steroidal anti-inflammatory compounds (Shankaranarayanan, Gopalakrishnan \& Kameswaran, 1979). Further many xanthones obtained from different plants but belonging to the Guttiferae family have been reported to possess anti-inflammatory and CNS depressant activities (Gopalakrishnan, Shankaranarayanan, Nazimudeen, Viswanathan \& Kameswaran, 1980). The title compound is one of the constitutents of the mangosteen fruit hulls, but there are no reports on the pharmacological properties of this compound itself so far. An X-ray structural analysis of this compound was carried out in order to ascertain its conformation and molecular geometry.

Experimental. The fruit hulls after extraction with petrol were further extracted with benzene. The benzene extract was chromatographed on silica gel (4:1 benzene/chloroform), further purified by prep. TLC to yield the title compound, which is identical in all respects, viz m.p., TLC and IR, to an authentic

[^0]specimen. Recrystallization of the compound from methanol gave yellow needles. Crystal dimensions $0.13 \times 0.15 \times 0.19 \mathrm{~mm}$. Computer-controlled fourcircle diffractometer (locally fabricated at BARC, India), monochromated Mo $K \alpha$ radiation. Cell parameters from least-squares refinement of setting angles of 25 reflections (θ range $8-15^{\circ}$), intensity data for $0<\theta<26^{\circ}, \omega / 2 \theta$ scans, three check reflections for every 97 data points did not vary significantly over the course of the data collection. Lp but no absorption correction, 1900 unique reflections ($h 0 \rightarrow 19, k 0 \rightarrow 7$, $l-20 \rightarrow 20)$ of which $1239[I>1 \sigma(I)$, owing to the poor quality of the crystal] used in calculations. Direct methods with MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980); an E map calculated from the set of phases with the highest figure of merit revealed the structure. Full-matrix least-squares refinement on F. Anisotropic temperature factors for C and O atoms, isotropic for $\mathrm{H} . \mathrm{H}$ positions from a difference map. Owing to the poor ratio of observations to the number of variables, final refinements were carried out in two blocks (non-hydrogens, 279 variables; hydrogens, 104 variables). $w=1.2160 /$ $\left[\sigma^{2}(F)+0.0002 \mid F_{o}{ }^{2}\right]$, final $R=0.065, w R=0.073$ for 1239 reflections. $R=0.086$ for all reflections. $S=1.73$; final ΔF map featureless, $(\Delta / \sigma)_{\max }=0.53$, final $\Delta \rho$ excursions $-0.26 \rightarrow 0.30$ e \AA^{-3}. No corrections for secondary extinction, scattering factors as in SHELX (Sheldrick, 1976). Calculations of geometrical data and crystal packing were computed by the program PARST (Nardelli, 1983). Calculations performed on IBM 370 computer.

Discussion. Final positional parameters of the non- H atoms are given in Table 1. \ddagger Bond distances and angles are given in Table 2. A perspective view of the molecule

[^1]Table 1. Fractional positional parameters and equivalent isotropic thermal parameters

$B_{\text {eq }}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
C(1)	0.3256 (6)	0.8338 (9)	0.6426 (6)	4.0 (4)
C (2)	0.3189 (6)	0.7144 (9)	0.5816 (6)	3.8 (4)
C(3)	0.2733 (6)	0.5192 (9)	0.5631 (6)	3.7 (3)
C(4)	0.2563 (6)	0.3842 (9)	0.4972 (6)	3.8 (3)
C(5)	0.2029 (6)	$0 \cdot 2059$ (9)	0.4828 (6)	3.6 (4)
C(6)	$0 \cdot 1792$ (6)	0.0650 (9)	0.4203 (6)	$4 \cdot 3$ (3)
C (7)	$0 \cdot 1303$ (6)	-0.1057 (9)	0.4063 (6)	3.8 (4)
C(8)	$0 \cdot 1005$ (6)	-0.1432 (9)	0.4572 (6)	$3 \cdot 7$ (4)
C(9)	$0 \cdot 1219$ (6)	-0.0146 (9)	0.5199 (6)	4.3 (5)
C(10)	$0 \cdot 1725$ (6)	0.1568 (9)	0.5304 (6)	4.5 (4)
C(11)	0.2395 (6)	0.4588 (9)	0.6075 (6)	3.5 (4)
C(12)	0.2531 (6)	0.5791 (9)	0.6730 (6)	4.1 (4)
C(13)	0.2943 (6)	0.7672 (9)	0.6876 (6)	4.6 (4)
C(14)	$0 \cdot 2650$ (6)	0.8519 (9)	0.7861 (6)	7.4 (5)
C(15)	0.4339 (6)	1.0813 (9)	0.7292 (6)	$6 \cdot 6$ (5)
C(16)	0.3514 (6)	0.8057 (9)	0.5340 (6)	3.3 (4)
C(17)	0.4352 (6)	0.7241 (9)	0.5614 (6)	4.8 (4)
C(18)	0.5015 (6)	0.8468 (9)	0.5863 (6)	4.6 (4)
C(19)	0.5798 (6)	0.7433 (9)	0.6079 (6)	$5 \cdot 7$ (5)
C(20)	0.5055 (6)	1.0845 (9)	0.5963 (6)	6.0 (5)
C(21)	$0 \cdot 1096$ (6)	-0.2692 (9)	0.3476 (6)	4.7 (4)
C(22)	0.0488 (6)	-4109 (9)	0.3305 (6)	4.5 (4)
C(23)	0.0016 (6)	0.3947 (9)	0.3677 (6)	4.4 (3)
C(24)	-0.0683 (6)	-0.2334 (9)	0.3248 (6)	5.4 (5)
C(25)	-0.0258 (6)	-0.6141 (9)	0.3810 (6)	5.7 (4)
O(1)	0.1942 (3)	0.2822 (5)	0.5936 (3)	4.3 (3)
$\mathrm{O}(2)$	0.3053 (3)	0.9011 (5)	0.7454 (3)	5.9 (3)
$\mathrm{O}(3)$	0.3615 (3)	1.0339 (5)	$0 \cdot 6565$ (3)	$5 \cdot 3$ (4)
$\mathrm{O}(4)$	0.2874 (3)	0.4104 (5)	0.4567 (3)	$5 \cdot 3$ (3)
$\mathrm{O}(5)$	0.2083 (3)	0.0985 (5)	0.3731 (3)	4.3 (3)
O (6)	0.0515 (3)	-0.3107 (5)	0.4467 (3)	4.9 (3)

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1)-\mathrm{C}(2)$	1.38 (2)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.38 (1)
$\mathrm{C}(1)-\mathrm{C}(13)$	$1 \cdot 38$ (2)	$\mathrm{C}(10)-\mathrm{O}(1)$	1.35 (1)
$\mathrm{C}(1)-\mathrm{O}(3)$	$1 \cdot 38$ (1)	C (11)-C(12)	1.41 (1)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.43 (1)	$\mathrm{C}(11)-\mathrm{O}(1)$	1.34 (1)
$\mathrm{C}(2)-\mathrm{C}(16)$	1.49 (2)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.36 (1)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.45 (2)	$\mathrm{C}(13)-\mathrm{O}(2)$	1.35 (1)
$\mathrm{C}(3)-\mathrm{C}(11)$	1.40 (2)	$\mathrm{C}(14)-\mathrm{O}(2)$	1.42 (1)
$\mathrm{C}(4) \bullet$ - $\mathrm{C}(5)$	1.44 (1)	$\mathrm{C}(15)-\mathrm{O}(3)$	1.43 (1)
$\mathrm{C}(4)-\mathrm{O}(4)$	1.24 (2)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.50 (1)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.40 (1)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.34 (1)
$\mathrm{C}(5)-\mathrm{C}(10)$	1.38 (2)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.48 (1)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.35 (1)	$\mathrm{C}(18)-\mathrm{C}(20)$	1.49 (1)
C (6)-O(5)	1.34 (2)	$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 36$ (1)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.42 (2)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.44 (2)
$\mathrm{C}(7)-\mathrm{C}(2 \mathrm{I})$	1.44 (1)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.54 (1)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 36$ (1)	$\mathrm{C}(23)-\mathrm{C}(25)$	1.53 (1)
$\mathrm{C}(8)-\mathrm{O}(6)$	$1 \cdot 35$ (1)	$\mathrm{C}(23)-\mathrm{O}(6)$	1.46 (1)
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{O}(3)$	118.7 (8)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)$	116.0 (8)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(3)$	118.2 (9)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{O}(1)$	118.6 (7)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13)$	$123 \cdot 0$ (6)	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(1)$	123.7 (8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(16)$	118.8 (6)	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	121.6 (7)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	116.8 (9)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(1)$	114.6 (8)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(16)$	124.0 (7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) 117.7 (9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	119.2 (7)	$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	121.4 (9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	123.1 (8)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(2)$	122.1 (8)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)$	117.5 (6)	$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{O}(2)$	116.5 (6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	124.0 (6)	$\mathrm{C}(2)-\mathrm{C}(16)-\mathrm{C}(17)$	111.3 (7)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.6 (9)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$) 125.5 (6)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(4)$	120.4 (6)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)$	126.0 (10)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	123.0 (7)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$) 119.3 (6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.2 (9)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(20)$) 114.7 (9)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	114.8 (6)	$\mathrm{C}(7)-\mathrm{C}(21)-\mathrm{C}(22)$	120.1 (9)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(5)$	118.2 (6)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.8 (7)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	123.4 (10)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{O}(6)$	110.3 (9)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(5)$	118.4 (7)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	111.0 (8)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(21)$	126.3 (9)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(25)$	113.0 (7)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	118.4 (7)	$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{O}(6)$	102.9 (6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(21)$	115.0 (7)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{O}(6)$	105.6 (5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(6)$	121.5 (8)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(25)$	113.4 (8)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.5 (7)	$\mathrm{C}(10)-\mathrm{O}(1)-\mathrm{C}(11)$	121.3 (7)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}(6)$	116.9 (8)	$\mathrm{C}(13)-\mathrm{O}(2)-\mathrm{C}(14)$	118.0 (5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	116.5 (9)	$\mathrm{C}(1)-\mathrm{O}(3)-\mathrm{C}(15)$	120.9 (5)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$125 \cdot 3$ (8)	$\mathrm{C}(8)-\mathrm{O}(6)-\mathrm{C}(23)$	117.5 (6)

is given in Fig. 1. The values of bond lengths and angles are similar to those observed in other comparable systems (Yoshida, Tanaka, Ashida, Kakudo, Fukuyama \& Katsube, 1979; Söderholm, Sonnerstam, Norrestam \& Palm, 1976).

One of the methoxy groups, $\mathrm{C}(15)-\mathrm{O}(3)$, is rotated so that $\mathrm{C}(15)$ is well out of the plane of ring A [deviation of $\mathrm{C}(15)=0.85$ (1) \AA; rotation about $\mathrm{C}(1)-$ $\left.O(3)=64(1)^{\circ}\right]$. Similar rotations of the methoxy group have been observed in celebixanthone, 72.8° (Stout, Stout \& Welsh, 1963) and in 2-hydroxy-1,3,4,7-tetramethoxyxanthone, $\quad 72 \cdot 0, \quad 58 \cdot 1, \quad 83 \cdot 0^{\circ}$ (Stout, Shun Lin \& Singh, 1969), where the methoxy group is similarly hindered by adjacent alkyl and hydroxyl groups. However, the other methoxy group $\mathrm{C}(14)-\mathrm{O}(2)$ is nearly coplanar with ring A [deviation of $\mathrm{C}(14)=0.05(1) \AA$; rotation about $\mathrm{C}(13)-\mathrm{O}(2)=$ $-6.6(13)^{\circ}$], allowing maximum conjugation of the unshared oxygen electrons with the aromatic π cloud. The close approach of $\mathrm{C}(14) \cdots \mathrm{C}(12)[2 \cdot 74$ (1) $\AA]$ that arises is presumably relieved by the opening of the $\mathrm{O}(2)-\mathrm{C}(13)-\mathrm{C}(12)$ angle $\left[122 \cdot 1(8)^{\circ}\right]$.

The three rings, A, B and C, of the xanthone ring system are nearly in a planar conformation $\left[\Sigma(\Delta / \sigma)^{2}\right.$ $=22.0,32.7$ and 1.6 respectively]. The rings A and C are inclined at an angle of $5.3(3)^{\circ}$. The ring D, linearly fused, evolved by the cyclization of an isoprenoid side chain is in a half-chair conformation. The corresponding asymmetry parameter (Duax, Weeks \& Rohrer, 1976) $\Delta C_{2}[\mathrm{C}(7)-\mathrm{C}(21)]=6.8^{\circ}$.

The mean plane of the 3 -methyl-2-butenyl side chain attached to ring A makes an angle of 66.8 (3) ${ }^{\circ}$ with the mean plane of the xanthone ring system. The corresponding angle in other xanthones is 95.4° in epishamixanthone (Fukuyama, Hamada, Tsukihara \& Katsube, 1978) and 102° in morellin (Kartha \& Ambady, 1982).

There is an intramolecular hydrogen bond $\mathrm{O}(5) \ldots$ $\mathrm{O}(4), 2.500(5), \mathrm{O}(5)-\mathrm{HO}(5), 0.95(3), \mathrm{O}(4) \cdots \mathrm{HO}(5)$, $1.82(3) \AA$; angle $\mathrm{O}(5)-\mathrm{HO}(5) \cdots \mathrm{O}(4), 126(3)^{\circ}$. The molecular packing projected along the ac plane is shown in Fig. 2.

Fig. 1. ORTEP drawing (Johnson, 1976) of the title compound. Thermal ellipsoids are at the 50% probability level.

Fig. 2. Molecular packing of the title compound viewed along the b axis.

We are grateful to $\operatorname{Dr}(\mathrm{Mrs})$ Nilima Banerji for supplying the authentic xanthone specimen. One of us (KR) thanks CSIR (India) for the award of a Senior Research Fellowship.

References

Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Top. Stereochem. 9, 271-283.
Fukuyama, K., Hamada, K., Tsukihara, T. \& Katsube, Y. (1978). Bull. Chem. Soc. Jpn, 51, 37-44.

Gopalakrishnan, C., Shankaranarayanan, D., Nazimudeen, S. K., Viswanathan, S. \& Kameswaran, L. (1980). Ind. J. Pharm. 12(3), 181-191.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kartha, G. \& Ambady, G. (1982). In Conformation in Biology, pp. 423-437. New York: Adenine Press.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Shankaranarayanan, D., Gopalakrishnan, C. \& Kameswaran, L. (1979). Arch. Int. Pharmacodyn. Ther. 239, 257-269.
Sheldrick, G. M. (1976). SHELX. Program for crystal structure determination. Univ. of Cambridge, England.
Söderholm, M., Sonnerstam, U., Norrestam, R. \& Palm, T. B. (1976). Acta Cryst. B32, 3013-3018.

Stout, G. H., Shun Lin, T. \& Singh, I. (1969). Tetrahedron, 25, 1975-1983.
Stout, G. H., Stout, V. F. \& Welsh, M. J. (1963). Tetrahedron, 19, 667-676.
Yates, P. \& Stout, G. H. (1958). J. Am. Chem. Soc. 80, 1691-1699.
Yoshida, O., Tanaka, N., Ashida, T., Kakudo, M., Fukuyama, K. \& Katsube, Y. (1979). Acta Cryst. B35, 1266-1268.

Structure of ent-(12R)-Methyl-15,16-epoxy-9,10-friedolabda-5(10),13(16),14-trien-19-oate 20,12-Lactone (Penduliflaworonsin)

By S. Bamidele Sanni,* H. Behm and Paul T. Beurskens
Crystallography Laboratory, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

and E. Kayode Adesogan
Department of Chemistry, University of Ibadan, Ibadan, Nigeria

(Received 20 June 1986; accepted 25 September 1986)

Abstract

Systematic name: 5-(3-furanyl)-3', $4,4^{\prime}, 5,5^{\prime}$,$6^{\prime}, 7^{\prime}, 8^{\prime}$-octahydro- $2^{\prime}, 5^{\prime}$-dimethyl-2-oxospiro [furan$3(2 H), 1^{\prime}\left(2^{\prime} H\right)$-naphthalenel-5'-carboxylic acid methyl ester, $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{s}, M_{r}=358 \cdot 4$, orthorhombic, $P 2_{1} 2_{1} 2_{1}$, $a=6 \cdot 2780$ (5), $b=12 \cdot 3069$ (10), $c=25 \cdot 1047$ (22) \AA, $V=1939.66 \AA^{3}, Z=4, D_{x}=1 \cdot 227 \mathrm{Mg} \mathrm{m}^{-3} . \mathrm{Cu} \mathrm{Ka}$ radiation (graphite-crystal monochromator, $\lambda=$ $1.54178 \AA), \quad \mu(\mathrm{Cu} K \alpha)=0.67 \mathrm{~mm}^{-1}, \quad F(000)=768$, $T=290 \mathrm{~K}$. Final $R=0.044, w R=0.045$ for 1914 'observed' reflections and 313 variables. The two six-membered rings A and B adopt half-chair and intermediate half-chair/envelope conformations, respec-

^[* Permanent address: Department of Chemistry, University of Benin, Benin City, Nigeria.]

0108-2701/87/030555-04\$01.50
tively, while the lactone ring is close to a half-chair (C_{2} form). Methyl groups $\mathrm{C}(18)$ and $\mathrm{C}(17)$ are pseudo-axial and bisectional respectively. The conformation of the methoxycarbonyl group is synperiplanar.

Introduction. The title compound, isolated from Croton penduliflorus Hutch (Euphorbiaceae), an important medicinal plant used by the Yorubas of Nigeria as a remedy for stomach complaints, was reported to have the structure (I) (Adesogan, 1981). In the structure (I), proposed on spectroscopic (NMR, IR, UV) and chemical evidence, the stereochemistry was inferred on biogenetic grounds. Penduliflaworosin is of interest in view of the current emphasis and importance which the Nigerian government places on local medicinal plants © 1987 International Union of Crystallography

[^0]: *Contribution No. 692 from the Department of Crystallography and Biophysics.
 \dagger To whom all correspondence should be addressed.

[^1]: \ddagger Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43464 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.
 © 1987 International Union of Crystallography

